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Abstract

Using a process similar to the creation of hypervelocity stars, we show
how binary objects (binary asteroid, spaceship+asteroid, etc.) can be
used for interstellar travel. Previous research has shown that binary star
- single star interactions can cause high-velocity ejection of one member of
the inbound binary. By selecting the correct chaotic trajectory, the same
should be attainable for ejecting the chosen member of a binary object
targeted as near to the sun as is survivable by electronics and / or crew.

This paper will outline the basic process and compute the velocity
that can be achieved under various orbital parameters via a conserva-
tion of energy calculation. We show via analogy to previously published
calculations involving binary star - black hole interactions that suitable
trajectories should exist to achieve useful energy gain.

1 Introduction

Gravitational assist is well known in spaceflight [10]. Simple gravitational assist
from close approaches to moving bodies, typically planets, is used extensively for
current unmanned space probes. These trajectories usually include an Oberth
maneuver [12] to increase the acceleration during gravitational assist by firing
engines at closest approach. In this paper, we discuss the possibility of another
kind of gravitational assist achieved when two objects in mutual orbit make a
close approach to a massive body.
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The interaction between binary stars and single objects has been been shown
to allow for the ejection of one of the incoming objects at high velocity [9, 8].
The high stellar density of globular star clusters causes binary star - single star
interactions to occur at a comparatively high rate. This interaction has been
shown to cause the diameter of the core of globular star clusters to oscillate [3],
sometimes chaotically [2], because of the ejection of stars as a heating source
for the cluster.

Similarly, hypervelocity stars have been detected in the Milky Way galaxy [5].
Sixteen such stars are known to date. These are stars traveling at galactic es-
cape velocities. The best explanation for these extreme velocities appears to be
the interaction of a stellar binary with the Milky Way’s central black hole [7].

This process is also suggested for how Triton was captured by Neptune [1].
And inbound binary object was tidally disrupted, capturing one element of the
binary and ejecting the other. The same process has been proposed as a general
mechanism for how planets can capture moons [14].

The question addressed here is whether binary objects can be used in a
similar way for astronautics. By appropriately targeting a binary object toward
a massive body, such as the Sun, we hope to eject one of those objects with
a significant gain in velocity while leaving the other object in a close captured
orbit. This paper computes the energy that can be transfered to one of the
objects in the binary via a close approach to the Sun, and the resulting velocity
obtained. This process leverages the intrinsically chaotic nature of a three-body
system, so we expect desirable trajectories to be rare, if present. Leveraging the
study by Hills [7] will show that suitable trajectories may, in fact, exist.

2 The Basic Trajectory

The key to the binary object gravitational assist maneuver is having a disposable
object of significant mass. For purposes of discussion, we will assume that this
is an asteroid in near-Earth-orbit (NEA). As of September 2011, 8,121 NEAs
are known [11] with 828 of those having diameters of 1 km or greater. A recent
discovery has shown that such objects exist in “Trojan” orbits [13] near the
Earth, inhabiting the Earth-Sun Lagrangian points L4 and L5, just as happens
with the gas giant planets. The first such object was found at roughly +60◦

relative to the Earth sharing roughly the same orbit [6].
Using such an NEO, imagine that some part of the object is hollowed out

and used as the interstellar space ship as proposed by D. Cole in the 1960s while
the remainder is to be discarded. The NEO’s orbit would have to be modified
to achieve a close encounter with the sun.

En route to the Sun, the object would be split into a binary, presumably by
destroying a “waist” that was created earlier in the object. Upon close approach
to the Sun, assuming just the right trajectory, the expendable part would be
captured into solar orbit and the “spaceship” would be ejected at high velocity.

The following results would also follow from assuming that a man-made
spaceship enters orbit about an appropriately sized object, such as an asteroid
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Figure 1: The assumed trajectory for the binary object. Starting from a near-
Earth-orbit, a single object is assumed to be on a close approach trajectory to
the Sun. En route, the object separates into Asteroid 1 that is assumed to be
captured into a close orbit about the Sun, and Asteroid 2 that is assumed to be
ejected at high velocity. Alternatively, Asteroid 1 could be the initial object and
the second is a man-made spaceship placed in binary orbit with the asteroid.
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or sun-grazing comet, and travels as a binary to near-Sun interaction.

3 Energy Transfer Calculations

This calculation looks at how much energy can be transfered from the binary
to one of the final parts via a close approach to the Sun. The primary source of
energy gain is the change in gravitational potential energy between near-Earth-
orbit and perihelion. This is computed via a simple conservation of energy
equation. Energy at aphelion equals energy at perihelion.

Ea = Ep (1)

The initial energy will include orbital kinetic energy, rotational energy of the
binary, and gravitational potential energy at aphelion.

Ea = Ea,orbital + Erotational + Ua (2)

=
Gm1m2

4Rb
+

GMm0

2Re
− GMm0

Ra
(3)

where

• m1 is the mass of the object that will be captured into solar orbit.

• m2 is the mass of the object that will be ejected.

• m0 = m1 + m2 is the total mass of the initial binary.

• M is the mass of the Sun.

• Rb is the separation of the binary objects’ mutual orbit.

• Re is the mean radius of the Earth’s orbit about the Sun.

• Ra is the distance of the object from the Sun at aphelion.

The equation for Ea would not normally include a kinetic energy term at aphe-
lion if this is purely an object in an elliptical orbit. The generalization here
allows for the use of residual kinetic energy from an orbital insertion maneuver
such as a close flyby of a planet such as Earth.

When the binary object reaches closest approach to the Sun, if the right
trajectory is attained, a transfer occurs that puts object 1 into close solar orbit
and object 2 is ejected with total energy E2.

Ep = E1p,orbital + U1p + E2 (4)

=
GMm1

2Rp
− GMm1

Rp
+ E2 (5)

where
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• Rp is the mean orbital radius of object 1 attained via the transfer at
perihelion.

• E2 is the total energy of object 2 after the transfer at perihelion.

Equating energy at aphelion with energy at perihelion after the transfer, we
can solve for E2 as

E2 = G

[
m1m2

4Rb
+ M

(
−m0

Ra
+

m0

2Re
+

m1

2Rf

)]
(6)

At infinity, the potential energy of object 2 will be zero, so the velocity of object
2 at infinity is

E2 =
1

2
m2v

2
2,∞ (7)

giving

v2,∞ =

{
2G

[
m1

4Rb
+ M

(
− 1

Ra

m0

m2
+

1

2Re

m0

m2
+

1

2Rp

m1

m2

)]} 1
2

(8)

4 Results

Using Eq. 8 for the exit velocity of object 2, several things are immediately clear.
The first term m1

4Rb
comes from the rotational energy of the initial binary. That

contribution is negligible compared to the other terms which are all multiplied
by the Sun’s mass.

Assuming that perihelion will be much closer than the Earth’s orbit, only
the final term will contribute significantly to the final result, so we find that

v2,∞ ≈

√
GM

Rp

m1

m2
(9)

This means that to maximize energy transfer, we want the smallest possible
perihelion distance and for the “spaceship” mass m2 to be much less than the
mass of the deposited object m1. Also note that the result is independent of
the initial rotation of the binary and whether the original object’s aphelion is
greater than Earth’s orbit, even out to 100 AU.

Using the full equation, we get the expected results in Figure 2.
With this information, we can approximate the travel time to Alpha Centari

assuming no additional propulsion as shown in Figure 3.
When we consider the possibility of sending unmanned probes to another

star, more extreme trajectories are possible. Current estimates are that elec-
tronics would survive a closest approach of 0.2 AU. If we could find a usable
trajectory with perihelion of 0.2 AU for a probe with 0.1 mass ratio, the exit
velocity would be 1,800 km/s or 0.06%c. With no other propulsion mechanism,
that would correspond to a travel time of 7,300 years to Alpha Centari. This
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Figure 2: The exit velocity of object 2 at infinity as a fraction of the speed of
light, c, for a range of masses, m2. The lines correspond to perihelion distances
in AU including 1

4Mercury(0.10), Mercury(0.39), and Venus(0.72).
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Figure 3: The travel time needed to reach Alpha Centari as a function of the
perihelion distance. The lines correspond to the ratio of m2/m0.
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result is highly sensitive to the perihelion distance and the mass ratio. Reduc-
ing the perihelion distance to 0.1 AU would increase the exit velocity by 50%.
Conversely, increasing the mass ratio to 0.2 would cause an equivalent decrease
in the exit velocity. Reducing the perihelion distance is largely an engineering
question. The minimum mass ratio will be a physical constraint.

5 Probability of Ejection

The above calculation shows that sufficient energy is available. It does not
prove that trajectories exist that can extract this energy. Hills [7] conducted
high-fidelity simulations of binary star - black hole interactions and measured
the probability of an ejection. Hills computes a dimensionless parameter, Dmin,
for which he shows the probability of an exchange. If we replace his black hole
with our Sun and his binary star with our binary asteroid, we get following
expression.

Dmin =
Rp

Rb

(
2M

106m0

)−1/3
(10)

According to Hills’ simulations, for Dmin ≈ 1, the probability of interaction
across all randomly selected initial conditions is 1%. This probability drops
roughly linearly to 0 for Dmin ≈ 170. This implies that in order to have a
non-zero probability of asteroid ejection, we need

Rp

Rb
< 0.5 (11)

In the current example, if we assume a total mass for the binary of 1015kg,
which is approximately the mass of Deimos [4], a perihelion distance 0.2 AU,
and a semi-major axis for the binary of 150 km, then the probability of an
interaction is approximately 0.4%. This means that a detailed search will be
required, but that ejection trajectories are possible.

Hills’ formula does not consider the mass ratio of the objects in the initial
binary. We must assume that for extreme mass ratios, ejection would not be
observed. This is unfortunate since extreme ratios lead to the greatest ejection
velocity. Specific simulations will be needed to determine the range of mass
ratios over which ejection can occur.

The previous calculation of probability is based upon the assumption that
Hills’ expression can be translated to the current problem. That assumption
should be confirmed via the same kind of simulation Hills conducted but made
specific to our problem.

Although in theory one could achieve high exit velocities with real trajec-
tories, we have not yet computed the G-forces that would be encountered by
the ship and travelers. It may be possible that the acceleration encountered as
these velocities are achieved are too great for the survival of ship or crew.

Also, we do not know how much margin for error exists in the computed
trajectory. Even if the trajectories exist, are they navigable? At this point,
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we must assume that the mutual orbit of the binary must be precisely timed
to its close approach of the Sun in order to get maximum energy transfer and
be propelled in the correct direction. One must assume that some form of
propulsion will be needed for course correction, and that precisions adjustments
will be needed.

All of these questions could be resolved via simulations of specific orbits.

6 Conclusions

The calculations performed here show that a binary object-Sun gravitational as-
sist maneuver could provide significant energy under plausible conditions. This
could occur without the use of any significant propulsion in either engines or
fuel. However, the most likely approach would incorporate elements of all known
effects:

• Gravitational assist via a binary object-Sun interaction.

• Gravitational assist leveraging the proper motion of the Sun toward a
nearby star like Alpha Centari.

• An Oberth maneuver at perihelion following ejection.

Just as important as getting to another star is being able to stop once you
get there. One option would be to perform this binary object-star gravita-
tional assist again, but in reverse, as was hypothesized for capture of moons by
planets [1]. If the “spaceship” was a section of the original asteroid, one could
envision splitting the remaining part again into a binary object and performing
a close approach to the other star, but this time the crew would be in the portion
captured into stellar orbit while ejecting a portion of their former home.
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